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Abstract. In this paper, a hybrid descent method, consisting of a simulated annealing algorithm and
a gradient-based method, is proposed. The simulated annealing algorithm is used to locate descent
points for previously converged local minima. The combined method has the descent property and the
convergence is monotonic. To demonstrate the effectiveness of the proposed hybrid descent method,
several multi-dimensional non-convex optimization problems are solved. Numerical examples show
that global minimum can be sought via this hybrid descent method.
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Nomenclature:

{a, b}, integers ranging from a to b (a < b); [a, b], real numbers between a and b (a < b), T, the
current temperature; a, the cooling speed; N, the number of cooling steps; N, the number of random
perturbations for each temperature.

1. Introduction

Multi-dimensional non-convex continuous optimization problems are important in
many practical applications. Many approaches which are supported by relevant
convergence analysis are for finding local minima only (Rubinov, 2000). However,
many local minima are useless in practice, as their corresponding cost values are
much too inferior to the global minimum cost value. There are several stochastic
optimization methods proposed to solve for the global minimum. They are usually
heuristic in nature and very expensive to apply. Therefore, methods which are
hybrid of different type of algorithms are becoming more popular.

One method is to use gradient-type methods coupled with certain auxiliary
functions to move successively from one local minimum to another better one.
This includes the tunnelling method (Levy an Montalvo, 1985; Yao, 1989; Cetin
et al., 1993), the bridging method (Liu and Teo, 1999) and the filled function (Ge
and Qin, 1987; Ge, 1987, 1990; Liu, 2001; Xu et al., 2001; Zhang et al., 2001).
These methods rely heavily on the successful construction of a tunnelling function,
a bridging function or a filled function to by-pass previously converged local min-
ima. Another interesting method is to apply the cutting angle method to by-pass
local minima. This involves solving subproblems of the minimax-type (Bagirov
and Rubinov, 2002). For low dimensions, some of these methods have been shown
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to provide very reliable algorithms to locate the global minimum (Barhen et al.,
1997). However, most of these methods have been tested successfully on relatively
low dimensions, it is therefore unsure whether the numerical behaviour of these
methods for large scale non-convex minimization problems can be retained.

In general, a good global optimization technique should have the capability
of avoiding local minima, and the speed of convergence to approach stationary
points. For the case of continuous decision variables, the stochastic optimization
approach provides a good methodology to move away from stationary points, but
it is computationally intensive to be applied. One of the reasons for this is because
the method is very slow when it tries to approach or descent to stationary points.
On the other hand, an analytic approach based on the gradient information is much
more efficient in finding a stationary point. Ideally, we hope to retain the robustness
of the stochastic optimization method and the speed of the local minimizing al-
gorithm when it comes close to a stationary point. In this paper, a hybrid technique
is proposed to combine an analytic approach with a simulated annealing algorithm.

The simulated annealing algorithm (Kirkpatrick et al., 1983; Cerny, 1985) is
a stochastic optimization method. It has very nice convergent property (Locatelli,
2000 and has been widely applied for global optimization. By examining the sim-
ulated annealing algorithm, we see that its main advantage is in escaping from
local minima, rather than in finding the global minimum with pre-defined precision.
Therefore, we propose to combine simulated annealing algorithm with a gradient-
based algorithm to form a hybrid method. The simulated annealing algorithm is
used so as to escape from local minima. Then, a gradient-based algorithm is used
to speed up the task of local search. If a solution obtained is not global, the set of
possible descent points is still very large and therefore the probability of locating a
descent point is strictly positive. Since the simulated annealing algorithm is used to
locate a descent point from a previously converged local solution, the probability
of finding a descent point is much larger then finding a better local minimum. Thus,
it is much more efficient computationally.

The other main desirable property of the proposed hybrid descent method is
that the convergence is monotonic. Since the simulating annealing is mainly used
for seeking descent points, the decrease in the objective function after executing
each simulated annealing search might be very small. But it is sufficient to by-
pass previously converged local solutions and resume local neighbourhood search.
To demonstrate the effectiveness of the proposed hybrid method, several multi-
dimensional non-convex optimization problems are solved. For each example, the
proposed hybrid descent method locates its global solution.

2. Algorithms

Let f(x) be a twice continuously differentiable non-convex function on the set
QO = {x € R"a < x < b}, witha and b € R". We assume that all the minima
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of f(x) are isolated minima and that there is a finite number of them. We consider
the problem of finding the global minimum of f(x).

Since f(x) is not convex, we cannot expect to locate its global minimum using
a gradient-based approach. Theoretically, the global minimum of f(x) could be
sought by using the simulated annealing algorithm alone. However, its convergence
rate is usually very slow. On the other hand, a gradient-based algorithm is much
more efficient in converging to a stationary point. Thus, by combining the simu-
lated annealing algorithm with a gradient-based local minimization algorithm, we
obtain an efficient hybrid descent method, which is formally stated in the following:
A Hybrid Descent Algorithm

(1) Generate x© randomly and evaluate f(x®). Set k = 0.

(2) Solve for the local minimum of f(x) via a gradient-based minimization method
with x® as the initial guess to give x** such that f(x®*) — f(x®) < —¢,,
where €, is a positive parameter.

(3) Starting from x®-*, execute N simulating annealing iterations until a point
x**D is obtained, such that f(x*+D) — f(x®-*) < —§, for some positive
parameter J,.

(4) Setk := k + 1. Return to Step 2 until convergence.

In Step 3 of the algorithm, the simulated annealing iterations composes of three
key steps, namely

(1) the generation of the next trial point in the solution space via random perturb-
ations,

(2) a choice of a probability distribution to govern the acceptance of uphill steps,

(3) an annealing schedule.

In this paper, following Kirkpatrick et al. (1983) and Cerny (1985), the Boltzmann
probability distribution is used. The annealing schedule is determined by the para-
meters «, the cooling speed; N,, the number of cooling steps; N, the number of
random perturbations for each temperature; and the initial temperature, 7. Typical
choices of these parameters can be found in (Press et al., 1992). The simulated
algorithm algorithm can be implemented as follows:

Initiation. Select o, N., N, and initial T. Evaluate f(x®)-*).
Cooling.

(a) Let j be the cooling step. Set j = 1.
(b) If j € (1,---,N,)

(i) i =random{1,2,3}.
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Figure 1. A typical auxiliary function.

(ii) Depending on the outcome of i, within the set (), re-generate randomly
one of the following: one element of x, or m € random{l,---,n} elements
of x, or the whole vector of x. This gives X.

(iii) Calculate D=f(Xx)—f(x).If D< —§, orrandom[0, 1] < Texp(—D/T),
then x = X.

(iv) Set j := j + 1 and return to (i) until N perturbations are executed.

(c) Set T := aT and j := j+ 1. Return to Step (b) until N, cooling steps are
executed.

2.1. A COMPARISON WITH OTHER METHODS

Many deterministic global optimization methods rely on the successful construc-
tion of an auxiliary function to move successively from one local minimum to
another better one. Most auxiliary functions constructed attempt to penalize a local
minimum by weighting heavily at that point. A typical example of an auxiliary
function is

P = () = 1) +0) (14 o 0

where x* is a local minimum. Theoretically, the minimum of this function should
be different from x*. When p(x) < 0 is achieved by some ¥, this is sufficient
to by-pass x*. It is therefore attempted to minimize this function or to enforce it
as an inequality constraint. However, although X is clearly exist, it is not a trivial
task to look for the right trajectory. Starting from a fixed perturbation to x* is not
sufficient to local x. This is illustrated in Figure 1 where the variables are assumed
to be greater than zeroes. It p(x) is minimized with any starting points x* — €, X
sought will still be in the vicinity of x* and will therefore be trapped by the same
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Figure 2. The trajectory of convergence for the algorithm in the (x;,x,)-plane.

local minimum. We believe the same situation can happen even without the non-
negative constraint. Some deterministic strategies have been attempted to perturb
x* successively (Ng and Li, 2001). This will inevitably involve the solution of a
large number of nonlinear programming subproblems.

Another deterministic global optimization method is to combine the cutting
angle method with a local search. The method requires the solution of a number
of subproblems which is of the minimax-type and is combinatorial in nature. Al-
though it is demonstrated to work well for relatively small problems, its efficiency
towards larger problems is yet to be established.

The present method is stochastic in nature and it relies on the simulated an-
nealing algorithm to by-pass local minimum. This resembles successive random
perturbations to x* and is able to escape from any trap with a positive probability
as shown in Figure 1. Comparatively, the simulated annealing algorithm requires
only re-evaluation of cost functions instead of solving computationally expensive
subproblems.

3. Numerical Results

In the following, the Matlab 6 subroutine fmincon is used to solve for the local
minima of f(x). Moreover, we choose N' = 1, @ = 0.9, initial T = 0.7 in the
simulated annealing algorithm. N, and N are chosen to be large to prevent pre-
mature exit from the simulated annealing algorithm. All the results are executed on
a Pentium IV 1.6G PC running a Linux operating system.
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Figure 3. A typical convergence history for the algorithm in test 1.

3.1. TEST 1

The two-dimensional Shubert function (Shubert, 1972)

i=1 i=1

f(x,x,) = (iicos[(i + Dx, + i]) (iicos[(i + Dx, + i])

1
+ 5((xl +1.42513)* + (x, + 0.80032)%), —10 < x; < 10, i=1,2
is used, which has one global minimum located at
x, = —.142513, x, = —0.80032

with a function value f(x) = —186.73091. The starting points are chosen to be
(7,7),(7,-7),(=7,7),(0,0),and (-1.8,5.1). The convergence trajectory in the x, —
X,-plane is shown in Figure 2. A typical convergence history is depicted in Figure 3
which exhibits a perfect monotonic convergence. From different starting points, the
number of function evaluations required in the simulated annealing are summarized
as follows:
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Starting point Function evaluation in SA No. of local search

(1,7) 2 2
(-7.7) 12 3
(0,0) 16 3
(7,-7) 572 5
(-1.8,5.1) 63 6

This is to compare with approximately 100000 function evaluations if the simu-
lated annealing algorithm is applied alone in finding the global minimum within a
reasonable precision. Local search is usually very efficient in terms of number of
function evaluations in locating local minima. Therefore, a significant saving has
been achieved in using the hybrid descent method.

3.2. TEST?2

Another problem is taken from (Pardalos et al., 1991) which is a constrained op-
timization problem and can be summarized as follows:

k—1 r 2 n k ’
f(x) = Z(xi - _lxi+l> + - XN
i=k+1 i=1
Yxi=1, 520, i=1,--n k=I[n2]+1,
i=1

r= L r; = 5[sin(i)| + 0.1, i=1,---,k.

The problem has a global minimum at x** = (ry,---,r,,0,---,0)" with f(x*) =
—1. The dimension n = 100 is used. The starting point is chosen to be x°7 =
(0,---,0,1)" which has a function value f(x°) = 0. It took a few minutes to
reduce the cost function to the global value with two local searches taken.

3.3. TEST 3

Another problem is taken from (Griewank, 1981; Bagirov and Rubinov, 2002) and
can be written as:

n

1 ) " X;
LI il DY
f(x) 2000 ,-:1XI ECOS <\/;) +
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Figure 4. A typical convergence history for the algorithm in test 4.

The problem has a global minimum at x*” = (0,---,0)” with f(x*) = 0. The
starting point is chosen to be x°7 = (—n,---,—n)T which is very far from the
global solution. The dimension » = 1000 is used and it took about 30 min to
reduce the cost function from 2.5 x 10° to the global value with two local searches
taken.

3.4. TEST 4

We use the n dimensional Levy function (Levy and Montalvo, 1985)

fa) =2 (ksin%wyl) 00— aP (4 ksin’ () + O, — a>2> ,

i=1
v = 14+0.25(x;, — 1), —10 < x;, <10, i=1.2,-,n
where the constants k and a are fixed at 10 and 1, respectively. This function has

many local minima, where only one of these is the global minimum. The location
of this global minimum is at

and the function value at this point is equal to 0 irrespective of the dimension of the
problem. Different dimension are chosen and different starting points are generated
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randomly. The comparison is summarized in the following:

Dimension cpu time no. of local search

10 1.57-2.25s 2-3
100 183.4-739.1 s 4-6
1000 4.5-8.8h 4-6

A typical convergence history is shown in Figure 4. The global minimum has been
found for all starting points. From Figure 4, we see that since the simulating an-
nealing is mainly used for seeking a descent point, the decrease in the objective
function after SA can be very small. But it is sufficient for algorithm to by-pass
previous converged solutions and resume local neighbourhood search.

4. Conclusions

In this paper, a new hybrid descent method has been proposed for solving multi-
dimensional non-convex continuous optimization problems. The method employs a
gradient-based technique for local neighhourhood improvement and the simulated
annealing technique to by-pass local solutions. Numerical results have shown that
global minimum can be sought using this hybrid descent method with very nice
monotonic convergence history.
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